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Correlation and Prediction of Parameters Related to 
Vibrational Properties of Compounds 

G. Grimvall -''3 and A. Fern~tndez-Guillermet 4 

The vibrational contribution to the Gibbs energy G of solids is often expressed 
in a simple algebraic form in terms of the absolute temperature. This paper 
discusses how parameters entering such an expression for G are expected on 
theoretical grounds to show certain regularities and, hence, may be estimated 
for a certain compound if they are known for chemically related compounds. 
The regularities of the parameters arc exemplified by the sp~-bonded solids Si, 
Ge. :t-Sn, and l l l -V semiconducting compounds. 
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vibrations; III-V semiconductors. 

i .  I N T R O D U C T I O N  

In thermodynamic modeling the Gibbs energy G of a stoichiometric phase 
or compound is often expressed as [1, 2] 

G = a o + h T + c T l n ( T ) + d T  I + e T 2  + / ' T  ~ (l) 

T is the absolute temperature, and ao, h ..... are fitted parameters. In the 
Calphad [-3] type of assessment, the fitting aims at a representation that is 
consistent with all available thermodynamic information on the system. 

This paper deals with how theoretical results restrict the algebraic 
form of G and lead to quantities that have a smooth and regular behavior 
and hence allow for interpolations and extrapolations. Many of the ideas 
presented here have been applied previously to alkali halides [4] ,  actinide 
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dioxides [5],  alkali earth halides [6] ,  simple metals [7],  transition metals 
[8-10],  transition metal carbides and nitrides [11-13],  and diborides 
[14]. The reader is referred to that work for details. Here we focus on the 
implications for the form of G in Eq. (1), with an application to the 
sp3-bonded solids Si, Ge, ~.-Sn, AlP, AlAs, AISb, GaP, GaAs, GaSb, InP, 
InAs, and lnSb. 

2. REPRESENTATION OF THE VIBRATIONAL ENTROPY 

2.1. Series Expansions 

It is preferable to discuss the entropy S, rather than G. From Eq. (1), 

S =  - b - c - c  ln( T) + dT ~-- 2 e T -  3./'T 2 (2) 

The high-temperature expansion of S for harmonic phonons is [15] 

S =  3N/%{ 1 + In [k[3 T/h(o(O)] + ~ [hu)(2)/k~ T]'- 

~o [hco(4)//,-,, T] ~ + ...} (3) 

N is the number of atoms, k n is Boltzmann's constant, and to(n) are 
moments of the phonon density of states F(co), 

when i1 ¢ 0 and with In[co(O)] being the average of In co. Often it is con- 
venient to work with Debye temperatures 0(11), defined such that a Debye 
spectrum with cutoff energy kBO(n) would yield a frequency moment e)(n). 
Hence, 

kt~ 0(111 = hu)(n) (5) 

when i1 :/: 0 and kBO(O) = exp(1/3) hu~(0). The expansion (3) becomes 

S=3Nke{4 /3+In[T /O(O)]  + ~ o [ O ( 2 ) / T ] 2 - ~ [ O ( 4 ) / T ] 4 + . . . }  (6) 

2.2. Debye Temperatures from Experimental Data 

From heat capacity data Cp(T) one obtains a "heat capacity Debye 
temperature" 0c through 

C~(T) = Co(T/Oc) (7) 
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Fig. I. The entropy Debye temperature 0siT) defined by 
Eq. (8) and evaluated for silicon from recommended [21] 
entropy data. 

where Co is the Debye-model expression for the heat capacity. Similarly, 
vibrational entropy data Sp(T) yield an "entropy Debye temperature" 
0s through 

Sv( T) = SD( T/Os) (8) 

where SD is the Debye-model expression for the entropy. Since the true 
phonon spectrum is not harmonic and not of the Debye form, the solutions 
0 c and 0 s to Eqs. (7) and (8) will be temperature dependent (cf. Fig. 1). 
At high temperatures, when anharmonic effects make Co> 3N/%, Eq. (7) 
has no solution. Hence, 0c(T) has an unphysical behavior at high tem- 
peratures, which may be present even if one considers Cv instead of C o 
(cf. Ref. 9). 

Contrary to 0c(T), the entropy Debye temperature 0s(T) is well 
behaved at all temperatures (Fig. 1). According to Eq. (6), 0s(T) for 
harmonic vibrations asymptotically approaches exp(l/3)hco(O)/k~. In real 
systems, 0s(T) usually decreases with T at high temperatures, due to 
anharmonic softening of the phonon frequencies. Reference 5 discusses how 
one may use the fact that anharmonic effects are small for temperatures 
T<Os and construct an asymptotic 0(0) that can be considered as the 
harmonic part and how one also obtains 0(2). 0(0) is central in our discus- 
sion below. A more easily accessible quantity, and a good approximation 
to 0(0), is 0 s evauated at T~O s. Around this temperature 0s(T) varies 
slowly with T and 0s can be determined from tabulated entropy values. 
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3. TWO T H E O R E M S  O N  Os 

3.1. Anharmonic Phonon Frequency Shifts 

11 has been shown [16. 17] that the entropy is correctly obtained to 
low order in perturbation theory if the anharmonically shifted phonon 
frcquencies are used in the harmonic expression for the vibrational entropy. 
Hence, ~,)(01 in Eq. (31 shouid be evaluated from the temperature- 
dependent frequency spectrum, e.g., as it may be determined from inelastic 
neutron scattering data. Further, in low-order perturbation theory the 
anharmonic shift in the phonon frequencies is linear in T for T >  0s. There- 
fore. let 0(0 =O, , (O)[ l+ .4T] .  Comparing Eqs. (21 and (6). with A T ~ I .  
gives 

h = 3Nku l n [0 , , ( 0 ) ] -  Nku 19) 

c =  -3Nkl~ (10) 

d =  ~,, Nku[0(2)]-" (111 

e = 3 Nku ,  4 (12) 

As tile melting temperature Tr is approached, higher-order anharmonic 
effects may become important and give 0s(T) a nonlinear T dependence. 
Such effects contribute to a T -~ term and still higher powers of T in Eq. (2). 

3.2. Separation of the Influence of Atomic Masses 

Another important theoretical result refers to how the atomic masses 
affect G. One can show [4] that in tile logarithmically averaged phonon 
frequency t,J(0), and hence also in 0(0), tile atomic masses enter only as a 
multiplicative factor. We can write 

/" 

ku0(0) = h x/ ku /M~ (13) 

The effective mass M~ is tile logarithmically averaged atomic mass in the 
compound, and ks has the dimension of a force constant. It follows that 

h = 3Nk~,~ln(h/ku) - ½ ln(Mr ) - ½ ln(ks)~j - Nk,  (14) 

where ks refers to the force constant at T ~  0(0). 
In the quantum mechanical description above, the Gibbs energy G 

depends only on the atomic masses through a term (3NkuT/2 ) ln (M~) .  

This is consistent with a classical statistical mechanics description, which is 
valid at high temperatures. Then the atomic masses enter the partition 
function only through the kinetic energy. It follows that G depends on the 
masses only through a term In M~. irrespective of anharmonic effects. 
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4. APPLICATION TO sp3-BONDED SOLIDS 
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4.1. Temperature Dependence of 0s 

In Fig. I we show Os(T) for silicon, evaluated through Eq. (8) and 
using recommended entropy data [-21 ]. A series expansion of Os/T in terms 
of S(T)/k~ [-5] facilitates a quick calculation of 0s(T) for T>Os/3. The 
shape of fls(T) in Fig. 1 is characteristic of many solids and has been 
discussed elsewhere [-5, 7,9, 13]. However, the high-temperature part of 
/Is(T) in Fig. I is unusually linear in T, and the total decrease in 0s(T) from 
T ~  0 s to the melting temperature Tf is smaller than found for, e.g., metallic 
elements [7, 9] and actinide dioxides [5].  We conclude that anharmonic 
shifts in the phonon frequencies of Si are, on the average, small and well 
described by low-order perturbation theory. This fact also causes the 
maximum in the plot of 0s(T) versus T for Si to be at a higher T/Os(T) 
than is normally observed. We remark that 0s(T) may in some cases (e.g., 
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Fig. 2. Tile entropy Debye temperature 0 s, represented here by 
the value 0,,(0) evaluated when T~O s, varies approximately 
l i nea r l y  w i t h  1 , [ a ( M ~ )  ~ - ' ] ,  w h e r e  a is the la t t i ce  p a r a m e t e r  and  

M,.  is an ef fect ive a t o m i c  mass e q u a l  to the l o g a r i t h m i c a l l y  

ave raged  mass in the c o m p o u n d .  A l l  c o m p o u n d s  s h o w n  have  the 

sphalerite ~ZnS) structure. The dashed line is a guide for the eye. 
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metals with hexagonal crystal structure [7]) decrease continuously for 
all T, with a plateau around T~. 0 s, where normally a broad maximum is 
found. 

Solids with similar chemical bonding have similar plots of Os(T)/0o 
versus T/Tf [5, 7, 9]. The parameter A may then be estimated if S(T) is 
known for related solids; compare discussions of Tc [18], CrC [19], and 
CrsC [20]. 

4.2. Regularities for 0o(0) 

We shall approximate 00(0) by the value of 0s at T~-0s, where 0s(T) 
varies slowly (cf. Fig. 1 and the discussion above). Equation (13) shows 
that hypothetical solids of the same crystal structure, and with identical 
bonding but different atomic masses would have 0(0), and hence also 00, 
that differ only through the multiplicative factor l / x /M  r. If these solids 
have the same shapes of the potentials q~(r/s) giving the interatomic forces 
for a separation vector r, but with different scaling lengths s, one can show 
[4] that all 0(n) vary with s as l/s. Further, the latice parameter a for such 
a (cubic) system would be proportional to s. These considerations lead us 
to consider plots of 0(0) versus l/(a x/Mr). Figure 2 shows such a plot for 
sp3-bonded solids, with 0o(0) from recommended entropy data [2, 21 ] and 
a from Ref. 22. The solids in Fig. 2 all have the sphalerite (ZnS) structure 
and are chemically related. Hence we expect their bonding to be very similar. 
A manifestation of these facts is the good correlation shown in Fig. 2. 

5. P A R A M E T E R S  ENTERING THE GIBBS ENERGY 
REPRESENTATION 

We now discuss the implications for the representation in Eq. (1) of 
the Gibbs energy. The crucial parameter in the temperature dependence 
of G is b =  3Nk~ ln [0o(0 ) ] -Nk~ .  Suppose that we know 0s for a class of 
chemically related compounds of the same crystal structure. Then 00(0) for 
a compound for which no entropy data are available could be estimated 
through interpolation or extrapolation in a plot such as Fig. 2. An example 
could be ternary compounds of the III-V family, e.g., Gax In~_,.As, and 
relying on the regularity in Fig. 2. 

When the compared compounds do not all have the same crystal 
structure, the length parameter a that was used in Fig. 2 becomes 
ambiguous. We have found [11, 12, 14] that very regular plots are often 
obtained if we consider a quantity Es with the dimension of energy 

Es =/,'s O ~,/3 (15) 
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.Q,, is the average volume per atom in the compound, and ks is directly 
related to the vibrational entropy. Es was found to be remarkably constant 
in a group of 20 alkali earth halides [6] ,  in spite of varying crystal struc- 
tures. However, it is no general rule that Es is independent of the crystal 
structures. For instance, ZnS in the sphalerite structure (i.e., the structure 
of the compounds in Fig. 2) has 0 s = 370 K at T ~  0 s, while ZnS in the 
wurtzite structure has 0s = 296 K, although their g2, differ by only about 
1% and the structures have the same coodination number of 4. 

Es is a suitable quantity when one studies compounds that are related 
but have varying strength of the bonding. The reader is referred to graphs 
of E s versus the average number of valence electrons per atom, for tran- 
sition metal carbides and nitrides [11, 12] and diborides [14]. 

Next we turn to the parameter c in Eq. (1) for G. If c is left as a free 
parameter instead of taking c =  3NkB, one must compensate for this in the 
other parameters. Then they lose their regular behavior discussed above (cf. 
a discussion for actinide dioxides [5]) .  

The parameter d is related to the average squared phonon frequency, 
expressed by a Debye temperature 0(2). Lacking other information, one 
may take 0(2) ~ 0o(0); see a study of the various phases of Mn [23]. A plot 
of 0c(T) versus lIT 2, with 0c(T) from Eq. (7), may also be used to obtain 
0(2) [53. 

The parameter e, describing anharmonic effects, may be estimated 
from a comparison with 0s(T)/0o(0) versus T/Tr for related compounds, as 
mentioned in Section 4. It does not depend on the atomic masses. 

The parameter ao cannot be determined without information on the 
enthalpy at some reference temperature. Its determination lies outside the 
scope of the present paper, but we remark that the enthalpy of formation 
AH in a group of related compounds shows a strong correlation with Es 
[11, 12, 14]. Further, one often checks the consistency of the Gibbs energy 
G in Eq. (1) by performing phase diagram calculations and comparing the 
predictions with experiments [24-26].  

6. CONCLUSIONS 

The vibrational part of the Gibbs energy G(T) may be represented by 
a simple algebraic expression in T. We have discussed how theoretical 
results from lattice dynamics have implications for the parameters entering 
such an expression for G and how that can be used to establish regular- 
ities among them. It follows that the parameters entering G of a certain 
compound may be estimated if they are known for chemically related 
compounds. The regularities are exemplified by the sp3-bonded solids Si, 
Ge, ~-Sn, and III-V semiconductor compounds. 
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